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1. Introduction

Certain kinds of economic activity, and
their associated time series, are affected signif-
icantly by holidays. When the date of a hol-
iday changes from year to year, the effects of
the holiday can impact two or more months
in a way that depends on the date. In this
case, the effect of the holiday is not confined to
the seasonal component of the series. If such
holiday effects are ignored, then models fit to
the time series will often have reduced forecast-
ing ability. Also the model residuals may show
a lack of fit. Similarly, seasonal adjustments
of the series may provide misleading signals in
months affected by the holidays. In the U.S.,
the major moving holidays are Easter, Labor
Day, and Thanksgiving, the dates of which vary
over March 22-April 25, September 1-7, and
November 22-28, respectively. Elsewhere, holi-
days tied to a lunar calendar, such as the Chi-
nese New Year, Passover, and Ramadan have
an economic impact. Although we only apply
the modeling and model selection procedures
described in this paper to model U.S. holidays,
they are applicable more generally.

Disclaimer. This paper reports results
of research undertaken by Census Bureau staff.
It has undergone a more limited review by the
Census Bureau than do official publications. It
is released to inform and to encourage discus-
sion.

1.1 The Bell-Hillmer interval model

In the context of modeling Easter effects,
Bell and Hillmer (1983) introduced a simple
type of regressor that has proven to be versa-
tile for modeling effects of a variety of moving
holidays. Its underlying premise is that there
is an interval of length 7 days over which the
effect of the holiday can be regarded as being
the same for each day. With 7, denoting the
number of days in month ¢ that belong to this
interval, the value in month t of the holiday
regressor H(7,t) associated with this interval
is defined to be the proportion of the interval

contained within the month,

H(rt) =2, (1)
T

Several such regressors can be used to
model a more complicated effect, either in the
way that a step function can be used to approx-
imate a non-constant function, or to model the
situation in which there are different intervals
over which the effect of the holiday is differ-
ent. For example, in some countries, around
the Chinese New Year there is usually a surge in
economic activity before the holiday, followed
by a period of little activity, and then by a pe-
riod of increasing activity back to normal lev-
els. However, for the U. S. series considered in
this article, a single interval seems adequate,
an interval whose last day is the day before
the holiday in the case of Easter and Labor
Day. To illustrate, shoe store sales in the U.S.
increase before Easter. Suppose an 8-day in-
terval is considered for modeling this increase.
Then if month ¢ is March, 1994, a year in which
Easter fell on April 3rd, we have H(8,t—1) = 0,
H(8,t)=6/8, H(8,t+1)=2/8, H(8,t+2) =
0, etc.

With the Census Bureau’s X-12-ARIMA
program, holiday effects for one or several hol-
idays can be estimated by means of a reg-
ARIMA model, i.e. a time series model specify-
ing a regression mean function for the time se-
ries Y; (or, more commonly, for its logarithms)
that includes appropriate H(7,t)’s and speci-
fying an ARIMA model for its autocovariance
function. We indicate such a model with a for-
mula of the form

logV; = B'X, + 2, (2)

in which X; denotes the mean function’s re-
gressor, which could also include trading day
and outlier variables, and z; denotes a mean
zero ARIMA process. With B denoting the
backshift operator, BZ; = Z; 1, and &; a white
noise process, a more explicit formula is

8(B)%s (B'2)” ¢(B) @ (B?) (log Y; — B'X,)
=0 (B)© (B"), (3)



where ¢ () = 1—=, ¢,0,®, and © are polynomi-
als, and d, D > 0. To focus on a single holiday
regressor (1) included in Xy, we rewrite (2) as

logY; = aH(7,t) + yt, (4)

with y; = B'X; — aH(7,t) + 2. From (4), one
sees that the model identifies the holiday’s ef-
fect in Y; as the factor exp (a7 /T), or approxi-
mately 1+ ar /7. To this approximation, 100«
can be interpreted as the percentage effect of
the holiday for a month that completely con-
tains the interval associated with H (7,t), and
100a/T can be interpreted as the percentage
effect of a single day in the holiday interval in
any month that intersects the interval.

If each holiday interval of length 7 is
contained within a single calendar year, then
the proportions H(7,t) sum to one over each
calendar year, a property we express by
> year H(7:1) = 1. In case holiday adjust-
ment is the goal of modeling, we shall ex-
plain in Section 4 how H(7,t) can be mod-
ified in a natural way to obtain a regressor

H(7,t) having the same coefficient but satis-

fying Zyear H (7—7 t) = 0'

2. A Basic Model Selection Problem:
Determining 7

Often, for a given holiday and series, even
if it is known that a holiday effect is present
and where an endpoint of its interval should be,
an appropriate interval length 7 is not known
in advance. Competing models with different
T’s are non-nested, i.e. none is a special case
of another. Consequently, standard statisti-
cal tests are not available for determining 7.
We shall consider two alternative approaches
to this model selection problem, (1) the use of
a variant of Akaike’s AIC criterion, and (2)
the comparison of out-of-sample forecast er-
rors. Results from applying these approaches
to choose holiday effect models for series from
the U.S. Retail Trade Survey are given in Sec-
tion 3. Both approaches can also be used with
the more complex models of Morris and Pfef-
fermann (1984).

For this article, the parameters of every
regARIMA model are estimated from data
Y:;,1 <t < T by maximizing the associated
Gaussian likelihood function. With Ly—_12p_q
designating the maximized log likelihood of a
regARIMA model for Y;with d,Das in (3),

Hurvich and Tsay (1989)’s sample-size cor-
rected version of the model’s AIC, which we
shall denote by AICC, is

AICCr - 12p-a = —2Lr 12p-d

1
+2p { — T }(5)
1= 7-hpa

where p denotes the number of estimated para-
meters in the model. AICC’s can be compared
for models with the same values of d and D
and the same outlier regressors. Among such
models, the one with the smallest AICC value
is preferred. Although the value of p in (5) will
be the same for models (4) that differ only in
the value of 7, we shall also consider a model
without the regressor H (7,t), to represent the
possibility of no effect in the interval, a model
with one parameter less.

The theory supporting AIC and AICC as-
sumes that the models fit the data reasonably
well, see Findley (1999). Our other model se-
lection procedure, which involves withholding
some recent data, reestimating the models from
the remaining data, and comparing their fore-
casts of the withheld data, does not have this
requirement, nor the other requirements con-
cerning identical outlier regressors and identi-
cal values of d and D. Its disadvantages are
that it compares models two at a time and
that it can be inconclusive: neither model may
have persistently smaller forecast errors than
the other over the interval for which forecast
errors are obtained.

For models numbered ¢ = 1,2 and some

forecast lead h > 1, let Y9 denote model i’s

t+hlt
forecast of Y45 from time ¢ obtained when its
parameters are estimated from Yi,Ys,---,Y;.

For t < T — h, we can calculate the re-
sulting “out-of-sample” forecast error (OSFE)
Yien — Y;(_f_)hl .~ These forecasts and errors are
calculated for Ty + 1 < ¢t < T — h, where Tgis
chosen large enough that parameter estimates
used to produce the forecasts can be expected
to be of reasonable quality (e.g. as indicated
by their estimated standard errors or by com-
parison to the parameter values obtained with
all of the data). For the Easter holiday coeffi-
cients and series discussed in the next section,
Ty = 60 or 72 seemed adequate.

The OSFE diagnostic for comparing the
forecasting ability of models 1 and 2 over



Y7,41, Y2, -, Yr_j are the graphs of

o 2
SN AV = Y )% = Ve = Y807

T—h 2
Zt:To+1 (Yen — Y;(_i_zl|t)2/(T —To)

(6)
versus N forl < N < T — Ty — h for several
choices of h, usually h = 1,12. From this for-
mula, it is clear that over intervals of values of
N where the graph goes persistently up, the
forecasting performance of model (2) is better,
i.e. has smaller accumulated forecast errors;
where the graph goes persistently down, model
(1) is better. Where the graph is mostly level,
there is no essential difference in forecast per-
formance of the two models. The denominator
in (2) enables one to interpret jumps in the
graph in term of units of mean square forecast
error of the second model. More details are
given in Findley et al. (1998).

The graph of (6) in Figure 1 shows the
improvements in forecast errors for the Retail
Sales from Shoe Stores series obtained for leads
h = 1,12 when a model (model 2) with an
Easter interval regressor with 7 = 8 is used
in place of a model without an Easter regressor
(model 1). The improvement is substantial in
most Marches and Aprils, as expected.

J

gr% rssums of squared
100 150

Orocast

Standardized cgﬁeren
5

0

1992 1994 1996 1998
Date

Figure 1: Plot of (6) comparing Model 1 with
no Easter regressor to Model 2 with H(8,t) us-
ing leads h = 1 (solid) and h = 12 (dashes).
Vertical lines identify Aprils.

3. Determining Holiday Models for the
U.S. Retail Trade Survey

We now summarize the results of model
comparisons for determining which holiday re-

gressors to use, if any, for Easter, Labor Day,
and Thanksgiving effects, for the candidate se-
ries in the U.S. Retail Trade survey, using data
ending in February, 1999 and, in most cases,
starting in 1991 to avoid recession effects. We
begin with Easter because its effects are largest
and we did not find any series without Easter
effects that required adjustment for other holi-
days.

3.1 Easter holiday effects

In a candidate set of forty-seven retail sales
series, we found twenty-nine for which AICC
supported inclusion of an Easter regressor with
7 =1,8, or 15. OSFE analysis of these twenty-
nine series gave the following results: use of an
Easter regressor improved forecasts for fifteen,
had no clear effect on forecasts for thirteen, and
produced worse forecasts for one series. Table
1 provides a summary.

Table 1. 7-Preferences
AICC OSFE No. of Series
1 1 1
8 10
8orl
8 or 15
1

inconclusive

00| Co| Co| Co| Co

inconclusive
no H(r,t)

oo N |

1
1

| ot

We also considered 7 = 2,9,16, but the
results were never better and usually worse.

When OSFE and AIC disagree, which can
happen because the nature of the holiday ef-
fect has changed in the recent data, we favor
the OSFE preference if the more recent data or
forecasts have special importance for the users
of the modeling results.

3.2 Thanksgiving and Labor Day ef-
fects

Thanksgiving (the fourth Thursday in No-
vember) and Labor Day (the first Monday in
September) can affect a neighboring month’s
data in a way that depends on the holiday’s
date. For example, retail sales linked to the
December holidays can be distributed differ-
ently between November and December from
year-to-year depending on the date of Thanks-
giving.



For Thanksgiving, we consider regressors
for a holiday effect interval from some specified
number of days v before or after Thanksgiving
through December 24. We use negative values
of v to indicate an effect that begins v days
after Thanksgiving. For Labor Day, the holiday
effect intervals begin 7 days before Labor Day.

For the Thanksgiving effect, we consid-
ered v values of 10, 3, -1, -7, and -8 for the
twenty-nine series with Easter effects according
to AICC. The -7 and -8 values were clearly infe-
rior, so we only present comparisons of models
with the 7-values 10, 3 and -1. We always in-
cluded the Easter regressor favored by AICC
(and also trading day regressors) in the models
considered for AICC and OSFE comparisons
for Thanksgiving effects. The AICC compar-
isons for Thanksgiving suggested modeling its
effects in nine series. Among these nine, OSFE
analysis showed that inclusion of a Thanksgiv-
ing regressor resulted in persistent forecast im-
provements for six series, and that all regressors
were detrimental to the forecasting of one se-
ries, indicating none should be used. For the
six series for which a Thanksgiving regressor
improved forecasts, there was OSFE preference
for v = —1 for two series and for v = 10 for one
series — for the other three series, there was no
preferred value of v among —1, 3, 10.

In the one series for which the OSFE
analysis contradicted AICC’s support for a
Thanksgiving regressor, the AICC value for
the model with no Thanksgiving regressor ex-
ceeded the minimum AICC value by less than
1.0.  Distributional considerations for log-
likelihood ratios suggest that AICC differences
less than one in magnitude can be considered
inconclusive, see Sakamoto, Ishiguro and Kita-
gawa (1986).

For Labor Day effects, we considered 7 val-
ues of 2, 9 and 16, assuming that the Labor
Day effect interval would begin on one of the
three Saturdays before the holiday. Among the
twenty-nine series with Easter effects accord-
ing to AICC, the further AICC comparisons
for Labor Day suggested modeling its effects in
six series, always with 7 = 2. OSFE analysis
favored inclusion of a Labor Day regressor in
four of these six and was inconclusive for the
other two. Among these four, OSFE analysis
favored 7 = 2 for two series and was indifferent
to the choice of 7 for the other two.

4. Modifying the Models for Holiday
Adjustment

If the goal of modeling is to remove the
holiday effects from the data, along with any
seasonal effects and trading day effects, then
the regressors (1) may be somewhat unsatisfac-
tory from both conceptual and practical view-
points. Consider an example in which the es-
timated coefficient & of H(T,t) is positive, e.g.
retail shoe sales. Then the factors e (") ex-
ceed 1.0 in every month containing a day of
the holiday interval. Removing the effects by
dividing out these factors presupposes that the
excess of shoes bought in the holiday interval
would never have been bought had there not
been a holiday, surely a largely incorrect as-
sumption. Also, the adjusted series Y; /e (7:t)
will have a lower level than the original series in
all months touched by the holiday interval and
therefore consistently smaller annual totals,

Y;

year year

This will lead many users of the adjusted series
to perceive it as being downwardly biased.

For some series and holidays, it may be
possible to resolve this difficulty by finding an-
other interval (or intervals) associated with the
holiday whose Bell-Hillmer regressor has the
opposite sign from & and is such that the com-
bined adjustment from the several regressors
has annual totals that are usually close to those
of the original series. But a more generally
applicable strategy is needed, and one can be
found in the device used by the X-11 seasonal
adjustment procedure to try to insure that the
seasonally adjusted series preserves levels ad-
equately (see Appendix A of Findley et. al.
(1998)), which is done by reweighting the sea-
sonal factors so that their average values over a
year are close to 1.0. In seeking a simple mod-
ification H(7,t) of H(7,t) so that the factors
e®(mt) = 1 4 @H(7,t) have this property, we
are led to consider modifications H(r,t) such
that 1

o > H(r,t) =0. (7)

year
The procedure of Bell (1984), which is imple-
mented in X-12-ARIMA, achieves (7) by re-
moving from H(7,t) calendar month means of



the form
1 Ni—1
H*(r,t) = —— H(r,t+12(n—1
") = T 3 Hind+12-1)

1 N;—1 ~
NNy 2n=No Tir12(n—1)

= (8)

T

with N; > N, where t =t — 12[t/12], i.e. the
remainder after division of ¢ by 12. Thus 7/ is
the average of values 7, from the same calendar
month as t over an interval of N; — Ny years.
The modified regressor is
H(rt)=H(rt)— H* (r,t) = =L (9)
Note that if - .. H(7,t) = 1, as is the case
with the U.S. holidays for any plausible 7, then
Zyear H*(r,t) = 1, so Zyear Ef(’r, t) =0,
i.e. equality holds in (7). When this hap-
pens, the product of the adjustment factors

T

exp (&ﬁ[ (1, t)) is 1 over each calendar year,

H QOH(TE) _

year

(10)

The definition (8) yields

H*(r,t) — H*(1,t+12) =0 (11)
for any choice of Ny, N1 (N1 > Np). As a con-
sequence, if D > 1 in (3) (or if d > 1 and
seasonal indicators variables are included in
X¢), then the coefficient estimates, forecasts,
AICC’s, etc. obtained from the use of H(r,t)
will be identical to those obtained with H (r,t).
This applies to the holiday analyses of the Re-
tail Trade series presented above, because the
models for the series all include a seasonal
difference. Thus, changing to (9) would not
change the model selections presented above.
We note that (11) does not imply that H*(7,t)
models a purely seasonal effect, because it has
a level component, a long term mean close to
1/12, due to 3° . H*(1,t) = L.

In every calendar month in which H(r, )
is always 0, e.g. May and later months for
Easter regressors, the H*(7,t) defined by (8)
are 0, and consequently, H (r,t) = 0 and

e (mt) — 1 ie. adjustment does not mod-
ify the data, a property data users would ex-
pect. (There are no such months for Ra-
madan, which moves through the entire year.
So for Ramadan, one could alternatively define
H*(11) = S, 1y41 HTm)/12(Ny —
Ny), i.e., a global mean that does not depend
on t, in order to have a constant adjustment
factor, e ¢ (1) for all months outside the
holiday interval in a given year.)

4.1 Choices of Ny, N; and interpreta-

tion of exp (df[ (T, t))

If the holiday calendar repeats itself every
12(Ny — Np) months, then it follows from the
Fourier decomposition formulas of Section 4.2.3
of Anderson (1971) that H*(7,t) is the period
12 component of H(r,t). Then H(r,t) is the
theoretical deseasonalized and mean-corrected
component of H(T,t) (equality will hold in (7)).
It is theoretically attractive to choose Ny and
N; to achieve this. But when very long pe-
riods are involved, as in the case of Easter,
it can simplify discussion with data users to
choose smaller numbers that yield approximate
periodicity (400 years in the case of Easter in
X-12-ARIMA). Or one can simply specify Ny
and N; so that the sum in (8) covers the span
of the available data. If both seasonal adjust-
ment and holiday adjustment are being done,
the differences in adjustment factors e®H (™)
resulting from different choices of Ny and Ny
are unimportant, because the products of the
seasonal and holiday factors (the “combined
factors”) will be essentially unchanged for the
following reason. Given different versions, say
HEy (, t) and H(*2)(T, t), of (8), if we define
AH*(1,t) = H o (7, t)—HEkl) (7,t), then the cor-
responding adjustment factors satisfy

eOH ) (T)t) _ JGAH™(7,t) yaH (1) (T)t)

By (11), the ratio of the adjustment factors,
e&AH*(T,t)’ satisfies e&AH* (T,t+12) _ e&AH* (T,t)’
and since > . AH*(7,t) = 0, its average
value is a constant close to 1.0. So the ra-
tio is essentially a multiplicative seasonal ef-
fect and, in practice, it seems to get absorbed
almost completely into the seasonal factors of
Y; /e?H = (18 Consequently, the combined fac-
tors will be almost the same.

Adjustment by exp (&ﬁ (1, t)) is an ad-



justment for the percentage difference of
exp (&r) from exp (a1}), the latter being the
holiday effect were the calendar month of ¢
to contain exactly its average of holiday inter-
val days. Thus, we can interpret this adjust-
ment as presupposing that if the holiday did
not exist, we would have observed the value
exp (a7;") (Yi/ exp (7)) instead of Y, and we
are using adjustment to obtain this value. It
follows from (10), or the more approximate
relation implied by (7), that application of
these holiday adjustment factors provides a
percentage redistribution of these holiday ef-
fects throughout the calendar year.

The largest factors exp (&f[ (T, t)) ob-

tained from the retail sales series for each U.S.
holiday were: for Easter 1.06 (for Shoe Stores),
for Thanksgiving 1.012 (for Department Stores
and for Children’s and Miscellaneous Apparel),
and for Labor Day 1.015 (for Shoe Stores and
for Discount Department Stores).

4.2 Indirect estimation with H (7,t)

If, instead of using a regARIMA model to
directly estimate holiday effects from Y7, they
are estimated indirectly via a regression model
for the irregular component of a seasonal ad-
justment of Y;, the case for using a desea-
sonalized and level adjusted regressor like (9)
becomes even stronger, because the irregular
component is a deseasonalized and detrended
version of Y;. OSFE analysis can be used to
compare indirect and direct modeling of holi-
day effects.

5. Concluding Remarks

Our conclusions from our study are the
following. AICC comparisons can be used to
identify series that are good candidates for hol-
iday effect modeling as described in this paper.
However, it is worthwhile to perform OSFE
analyses of the series that are identified by
AICC as having a holiday effect, as a confir-
matory diagnostic. The OSFE results will usu-
ally be consistent with AICC results, but there
are occasional exceptions due, for example, to
a change in the strength or nature of the holi-
day’s effect on the series in the latest years of
the data.

All of the holiday effect estimates, AICC
values, and out-of-sample forecast error sums of
squares required for this study were obtained

from the Census Bureau’s X-12-ARIMA pro-
gram, which is available free from

http: / /www.census.gov/srd/www/z12a/ (12)

It includes built-in regressors for Easter, La-
bor Day and Thanksgiving. An accompa-
nying graphical diagnostics program, X-12-
Graph, which can produce plots like (6) from
X-12-ARIMA output, can also be downloaded
from (12). A program genhol is available from
brian.c.monsell@census.gov for generating re-
gressors (1) and (9) for X-12-ARIMA f{rom an
input file of holiday dates. Regressors can be
obtained for intervals before, surrounding, and
after one or more holidays.

We thank Bill Bell and Donald Martin for
comments that improved this paper.
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